
Week 2 - Friday

 What did we talk about last time?
 Math library
 Character I/O

It ain't what you don't know that gets you into trouble. It's what
you know for sure that just ain't so.

Mark Twain

 There are preprocessor directives which are technically not
part of the C language

 These are processed before the real C compiler becomes
involved

 The most important of these are
 #include
 #define

 Conditional compilation directives

 You have already used #include before
 #include <stdio.h>

 It can be used to include any other file
 Use angle brackets (< >) for standard libraries
 Use quotes (" ") for anything else

 It literally pastes the file into the document where the #include
directive is

 Never #include .c files (executable code), only .h files
(definitions and prototypes)

 It is possible to have a circular include problem

 The primary way to specify constants in C is with a #define
 When you #define something, the preprocessor does a find-and-replace
 Don't use a semicolon!

 #define directives are usually put close to the top of a file, for easy visibility

#define SIZE 100

int main()
{

int array[SIZE];
int i = 0;
for (i = 0; i < SIZE; ++i)

array[i] = i*i;

return 0;
}

 You can also make macros with #define that take arguments

 You need to be careful with parentheses
 Constants and macros are usually written in ALL CAPS to avoid

confusion

#include <math.h>
#define TO_DEGREES(x) ((x) * 57.29578)
#define ADD(a,b) ((a) + (b))

int main()
{

double theta = TO_DEGREES(2*M_PI);
int value = ADD(5 * 2, 7);

return 0;
}

 You can use directives #if, #ifdef, #ifndef, #else,
#elif and #endif

 These are mostly used to avoid infinite include problems
 Sometimes they will change what gets compiled based on

compiler version, system libraries, or other stuff

#ifndef SOMETHING_H
#define SOMETHING_H

int something(int a, int b);
#endif

 We said that the size of int is compiler dependent, right?
 How do you know what it is?

 sizeof is a built-in operator that will tell you the size of a data
type or variable in bytes

#include <stdio.h>

int main()
{

printf("%d", sizeof(char));
int a = 10;
printf("%d", sizeof(a));
double array[100];
printf("%d", sizeof(array));

return 0;
}

 In Java, constants are specified with the finalmodifier
 In C, you can use the keyword const
 Note that const is only a suggestion
 The compiler will give you an error if you try to assign things to const

values, but there are ways you can even get around that

 Arrays have to have constant size in C
 Since you can dodge const, it isn't strong enough to be used for

array size in C89
 That's why #define is more prevalent

const double PI = 3.141592;

 The header
limits.h includes a
number of constants
useful in C
programming

 There are some for
basic data types

 float.h has similar
data for floating-point
types, but it isn't as
useful for us

Constant
Typical
Value Constant Typical Value

SCHAR_MIN –128 INT_MIN –2147483648

SCHAR_MAX 127 INT_MAX 2147483647

UCHAR_MAX 255 UINT_MAX 4294967295

CHAR_MIN –128 LONG_MIN –2147483648

CHAR_MAX 127 LONG_MAX 2147483647

SHRT_MIN –32768 ULONG_MAX 4294967295

SHRT_MAX 32767 CHAR_BIT 8

USHRT_MAX 65535

 limits.h has other system limits
 C and Linux have their roots in old school systems programming
 Everything is limited, but the limits are well-defined and

accessible
 You may need to know:
 How many files a program can have open at the same time
 How big of an argument list you can send to a program
 The maximum length of a pathname
 Many other things…

 For system limits, a minimum requirement for the maximum value is
defined in limits.h

 If you want the true maximum value, you can retrieve it at runtime by
calling sysconf() or pathconf() (defined in unistd.h) with the
appropriate constant name

#include <stdio.h>
#include <unistd.h>

int main()
{

long value = sysconf(_SC_LOGIN_NAME_MAX);
printf("Maximum login name size: %ld\n", value);

return 0;
}

limits.h
Constant

Minimum
Value sysconf() Name Description

ARG_MAX 4096 _SC_ARG_MAX Maximum bytes for arguments (argv) plus environment
(environ) that can be supplied to an exec()

none none _SC_CLK_TCK Unit of measurement for times()

LOGIN_NAME_MAX 9 _SC_LOGIN_NAME_MAX Maximum size of a login name, including terminating null byte

OPEN_MAX 20 _SC_OPEN_MAX Maximum number of file descriptors that a process can have open
at one time, and one greater than maximum usable

none 1 _SC_PAGESIZE Size of a virtual memory page

STREAM_MAX 8 _SC_STREAM_MAX Maximum number of stdio streams that can be open at one time

NAME_MAX 14 _PC_NAME_MAX Maximum number of bytes in a filename, excluding terminating
null byte

PATH_MAX 256 _PC_PATH_MAX Maximum number of bytes in a pathname, including terminating
null byte

 C uses one byte for a char value
 This means that we can represent the 128 ASCII characters

without a problem
 In many situations, you can use the full 256 extended ASCII sequence
 In other cases, the (negative) characters will cause problems

 Let's see them!
 Beware the ASCII table!
 Use it and die!

If you ever put one of these
codes in your program, you
deserve a zero.

#include <stdio.h>

int main()
{

for (char c = 1; c != 0; ++c)
printf("%c\n", c);

return 0;
}

 There is nothing type safe in C
 What happens when you call printf() with the wrong

specifiers?
 Either the wrong types or the wrong number of arguments

printf("%d\n", 13.7);
printf("%x\n", 13.7);
printf("%c\n", 13.7);
printf("%d\n");

 What's the difference between %x and %X?
 How do you specify the minimum width of an output number?
 Why would you want to do that?

 How do you specify a set number of places after the decimal
point for floating-point values?

 What does the following format string say?
 "%6d 0x%04X\n"

 Now that we have a deep understanding of how the data is stored
in the computer, there are operators we can use to manipulate
those representations

 These are:
 & Bitwise AND
 | Bitwise OR
 ~ Bitwise NOT
 ^ Bitwise XOR
 << Left shift
 >> Right shift

 The bitwise AND operator (&) takes:
 Integer representations a and b

 It produces an integer representation c
 Its bits are the logical AND of the corresponding bits in a and b

 Example using 8-bit char values:

0 0 1 0 1 1 1 0 a

& 0 1 0 0 1 1 0 1 b

0 0 0 0 1 1 0 0 c

char a = 46;
char b = 77;
char c = a & b; //12

 The bitwise OR operator (|) takes:
 Integer representations a and b

 It produces an integer representation c
 Its bits are the logical OR of the corresponding bits in a and b

 Example using 8-bit char values:

char a = 46;
char b = 77;
char c = a | b; //111

0 0 1 0 1 1 1 0 a

| 0 1 0 0 1 1 0 1 b

0 1 1 0 1 1 1 1 c

 The bitwise NOT operator (~) takes:
 An integer representation a

 It produces an integer representation b
 Its bits are the logical NOT of the corresponding bits in a

 Example using 8-bit char values:

~ 0 0 1 0 1 1 1 0 a

1 1 0 1 0 0 0 1 b

char a = 46;
char b = ~a; // -47

 The bitwise XOR operator (^) takes:
 Integer representations a and b

 It produces an integer representation c
 Its bits are the logical XOR of the corresponding bits in a and b

 Example using 8-bit char values:

char a = 46;
char b = 77;
char c = a ^ b; //99

0 0 1 0 1 1 1 0 a

^ 0 1 0 0 1 1 0 1 b

0 1 1 0 0 0 1 1 c

 It is possible to use bitwise XOR to swap two integer values
without using a temporary variable

 Behold!

 Why does it work?
 Be careful: If x and y have the same location in memory, it

doesn't work
 It is faster in some cases, in some implementations, but should not

generally be used

x = x ^ y;
y = x ^ y;
x = x ^ y;

 Selection
 Loops

 Read K&R chapter 3
 Finish Project 1
 Due tonight by midnight!

 Start Project 2

	COMP 2400
	Last time
	Questions?
	Project 1
	Project 2
	Quotes
	Preprocessor Directives
	Preprocessor directives
	#include
	#define
	#define macros
	Conditional compilation
	Other C Features
	sizeof
	const
	System limits
	Other limits
	Getting these limits
	Examples of system limits
	char values
	ASCII table
	Character values
	Trouble with printf()
	Format string practice
	Bitwise Operators
	Bitwise operators
	Bitwise AND
	Bitwise OR
	Bitwise NOT
	Bitwise XOR
	Swap without a temp!
	Upcoming
	Next time…
	Reminders

